# Small multiples for line chart

Let’s say you want to build a line chart with several lines, one for each group of your dataset. Adding all of them on the same plot can quickly lead to a spaghetti plot, and thus provide a chart that is hard to read and gives few insights about the data. This post shows how to avoid it by creating several subplots using matplotlib.

Several ways exist to avoid creating a spaghetti plot, and one of them is using small multiple: here we cut the window in several subplots, one per group. Then, you can choose to display every group discretely, or not to show them at all. Note that you can easily do the same with the area chart.

## Left graph

You can create multiple plots on the same figure by using the `subplot()` function of matplotlib.

Note that you can check this post to see more examples of the `subplot()` function.

``````# libraries
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Make a data frame
df=pd.DataFrame({'x': range(1,11), 'y1': np.random.randn(10), 'y2': np.random.randn(10)+range(1,11), 'y3': np.random.randn(10)+range(11,21), 'y4': np.random.randn(10)+range(6,16), 'y5': np.random.randn(10)+range(4,14)+(0,0,0,0,0,0,0,-3,-8,-6), 'y6': np.random.randn(10)+range(2,12), 'y7': np.random.randn(10)+range(5,15), 'y8': np.random.randn(10)+range(4,14), 'y9': np.random.randn(10)+range(4,14) })

# Initialize the figure style
plt.style.use('seaborn-darkgrid')

# create a color palette
palette = plt.get_cmap('Set1')

# multiple line plot
num=0
for column in df.drop('x', axis=1):
num+=1

# Find the right spot on the plot
plt.subplot(3,3, num)

# Plot the lineplot
plt.plot(df['x'], df[column], marker='', color=palette(num), linewidth=1.9, alpha=0.9, label=column)

# Same limits for every chart
plt.xlim(0,10)
plt.ylim(-2,22)

# Not ticks everywhere
if num in range(7) :
plt.tick_params(labelbottom='off')
if num not in [1,4,7] :
plt.tick_params(labelleft='off')

plt.title(column, loc='left', fontsize=12, fontweight=0, color=palette(num) )

# general title
plt.suptitle("How the 9 students improved\nthese past few days?", fontsize=13, fontweight=0, color='black', style='italic', y=1.02)

# Axis titles
plt.text(0.5, 0.02, 'Time', ha='center', va='center')
plt.text(0.06, 0.5, 'Note', ha='center', va='center', rotation='vertical')

# Show the graph
plt.show()``````

## Right graph

As an alternative to the previous example, you can make multiple subplots consisting the lines of all groups with only one group highlighted in each subplot.

``````# libraries
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Make a data frame
df=pd.DataFrame({'x': range(1,11), 'y1': np.random.randn(10), 'y2': np.random.randn(10)+range(1,11), 'y3': np.random.randn(10)+range(11,21), 'y4': np.random.randn(10)+range(6,16), 'y5': np.random.randn(10)+range(4,14)+(0,0,0,0,0,0,0,-3,-8,-6), 'y6': np.random.randn(10)+range(2,12), 'y7': np.random.randn(10)+range(5,15), 'y8': np.random.randn(10)+range(4,14), 'y9': np.random.randn(10)+range(4,14) })

# Initialize the figure style
plt.style.use('seaborn-darkgrid')

# create a color palette
palette = plt.get_cmap('Set1')

# multiple line plot
num=0
for column in df.drop('x', axis=1):
num+=1

# Find the right spot on the plot
plt.subplot(3,3, num)

# plot every group, but discrete
for v in df.drop('x', axis=1):
plt.plot(df['x'], df[v], marker='', color='grey', linewidth=0.6, alpha=0.3)

# Plot the lineplot
plt.plot(df['x'], df[column], marker='', color=palette(num), linewidth=2.4, alpha=0.9, label=column)

# Same limits for every chart
plt.xlim(0,10)
plt.ylim(-2,22)

# Not ticks everywhere
if num in range(7) :
plt.tick_params(labelbottom='off')
if num not in [1,4,7] :
plt.tick_params(labelleft='off')

plt.title(column, loc='left', fontsize=12, fontweight=0, color=palette(num) )

# general title
plt.suptitle("How the 9 students improved\nthese past few days?", fontsize=13, fontweight=0, color='black', style='italic', y=1.02)

# Axis titles
plt.text(0.5, 0.02, 'Time', ha='center', va='center')
plt.text(0.06, 0.5, 'Note', ha='center', va='center', rotation='vertical')

# Show the graph
plt.show()``````

Line chart

Area chart

Stacked Area

Streamgraph

Timeseries

## Contact & Edit

👋 This document is a work by Yan Holtz. Any feedback is highly encouraged. You can fill an issue on Github, drop me a message onTwitter, or send an email pasting `yan.holtz.data` with `gmail.com`.

Violin

Density

Histogram

Boxplot

Ridgeline

Scatterplot

Heatmap

Correlogram

Bubble

Connected Scatter

2D Density

Barplot

Wordcloud

Parallel

Lollipop

Circular Barplot

Treemap

Venn Diagram

Donut

Pie Chart

Dendrogram

Circular Packing

Line chart

Area chart

Stacked Area

Streamgraph

Timeseries

Map

Choropleth

Hexbin

Cartogram

Connection

Bubble

Chord Diagram

Network

Sankey

Arc Diagram

Edge Bundling

Colors

Interactivity

Animation

Cheat sheets

Caveats

3D