Percent stacked barplot


The previous post shows how to generate a stacked barplot using matplotlib. This post explains how you can modify your sctacked barplot to display bars as a percent bars consists of different percentages of subgroups.

A percent stacked bar chart is almost the same as a stacked barchart. Subgroups are displayed on of top of each other, but data are normalised to make in sort that the sum of every subgroups is 100.

# libraries
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
import pandas as pd
 
# Data
r = [0,1,2,3,4]
raw_data = {'greenBars': [20, 1.5, 7, 10, 5], 'orangeBars': [5, 15, 5, 10, 15],'blueBars': [2, 15, 18, 5, 10]}
df = pd.DataFrame(raw_data)
 
# From raw value to percentage
totals = [i+j+k for i,j,k in zip(df['greenBars'], df['orangeBars'], df['blueBars'])]
greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)]
orangeBars = [i / j * 100 for i,j in zip(df['orangeBars'], totals)]
blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)]
 
# plot
barWidth = 0.85
names = ('A','B','C','D','E')
# Create green Bars
plt.bar(r, greenBars, color='#b5ffb9', edgecolor='white', width=barWidth)
# Create orange Bars
plt.bar(r, orangeBars, bottom=greenBars, color='#f9bc86', edgecolor='white', width=barWidth)
# Create blue Bars
plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color='#a3acff', edgecolor='white', width=barWidth)
 
# Custom x axis
plt.xticks(r, names)
plt.xlabel("group")
 
# Show graphic
plt.show()

Edit: Following the nice comment of Prakash, I propose a little modification to this chart in order to add a legend.

# Create green Bars
plt.bar(r, greenBars, color='#b5ffb9', edgecolor='white', width=barWidth, label="group A")
# Create orange Bars
plt.bar(r, orangeBars, bottom=greenBars, color='#f9bc86', edgecolor='white', width=barWidth, label="group B")
# Create blue Bars
plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color='#a3acff', edgecolor='white', width=barWidth, label="group C")
 
# Custom x axis
plt.xticks(r, names)
plt.xlabel("group")
 
# Add a legend
plt.legend(loc='upper left', bbox_to_anchor=(1,1), ncol=1)
 
# Show graphic
plt.show()

Violin

Density

Histogram

Boxplot

Ridgeline

Contact & Edit

👋 This document is a work by Yan Holtz. Any feedback is highly encouraged. You can fill an issue on Github, drop me a message onTwitter, or send an email pasting yan.holtz.data with gmail.com.

This page is just a jupyter notebook, you can edit it here. Please help me making this website better 🙏!

Violin

Density

Histogram

Boxplot

Ridgeline

Scatterplot

Heatmap

Correlogram

Bubble

Connected Scatter

2D Density

Barplot

Spider / Radar

Wordcloud

Parallel

Lollipop

Circular Barplot

Treemap

Venn Diagram

Donut

Pie Chart

Dendrogram

Circular Packing

Line chart

Area chart

Stacked Area

Streamgraph

Timeseries with python

Timeseries

Map

Choropleth

Hexbin

Cartogram

Connection

Bubble

Chord Diagram

Network

Sankey

Arc Diagram

Edge Bundling

Colors

Interactivity

Animation with python

Animation

Cheat sheets

Caveats

3D