Custom donut plot using matplotlib


This post aims to describe how to improve the features of your basic donut plot. It shows how to custom color, labels, and wedges.

Color

You can change the colors in your donut plot using the colors parameter of the pie() function. On the example, colors are provided one by one to the function.

# library
import matplotlib.pyplot as plt
 
# create data
names = ['groupA', 'groupB', 'groupC', 'groupD']
size = [12,11,3,30]
 
# Create a circle at the center of the plot
my_circle = plt.Circle( (0,0), 0.7, color='white')

# Give color names
plt.pie(size, labels=names, colors=['red','green','blue','skyblue'])
p = plt.gcf()
p.gca().add_artist(my_circle)

# Show the graph
plt.show()

If you do not provide enough color to the function, they will be cycled.

# library
import matplotlib.pyplot as plt
 
# create data
names = ['groupA', 'groupB', 'groupC', 'groupD']
size = [12,11,3,30]
 
# Create a circle at the center of the plot
my_circle = plt.Circle( (0,0), 0.7, color='white')

# Not enough colors --> colors will cycle
plt.pie(size, labels=names, colors=['red','green'])
p = plt.gcf()
p.gca().add_artist(my_circle)

# Show the graph
plt.show()

You can also import a palette using the Palettable utility. See the matplotlib color page for more info!

# library
import matplotlib.pyplot as plt
from palettable.colorbrewer.qualitative import Pastel1_7
 
# create data
names = ['groupA', 'groupB', 'groupC', 'groupD']
size = [12,11,3,30]
 
# Create a circle at the center of the plot
my_circle = plt.Circle( (0,0), 0.7, color='white')

from palettable.colorbrewer.qualitative import Pastel1_7
plt.pie(size, labels=names, colors=Pastel1_7.hex_colors)
p = plt.gcf()
p.gca().add_artist(my_circle)

# Show the graph
plt.show()

Labels

You can customize the distances of labels from the chart by using labeldistance parameter in the pie() function.

# library
import matplotlib.pyplot as plt

# create data
names = ['groupA', 'groupB', 'groupC', 'groupD']
size = [12,11,3,30]
 
# Create a circle at the center of the plot
my_circle = plt.Circle( (0,0), 0.7, color='white')

# Label distance: gives the space between labels and the center of the pie
plt.pie(size, labels=names, labeldistance=0.45)
p = plt.gcf()
p.gca().add_artist(my_circle)
plt.show()

It is possible to change the colors of labels with rcParams:

# library
import matplotlib.pyplot as plt

# create data
names = ['groupA', 'groupB', 'groupC', 'groupD']
size = [12,11,3,30]
 
# Create a circle at the center of the plot
my_circle = plt.Circle( (0,0), 0.7, color='white')
 
# Label color
plt.rcParams['text.color'] = 'red'
plt.pie(size, labels=names)
p = plt.gcf()
p.gca().add_artist(my_circle)
plt.show()

Wedges

wedgeprops parameter can be passed to the pie() function in order to set width of the wedge border lines and color:

# library
import matplotlib.pyplot as plt

# create data
names = ['groupA', 'groupB', 'groupC', 'groupD']
size = [12,11,3,30]
 
# Create a circle at the center of the plot
my_circle = plt.Circle( (0,0), 0.7, color='white')

# Custom wedges
plt.pie(size, labels=names, wedgeprops = { 'linewidth' : 7, 'edgecolor' : 'white' })
p = plt.gcf()
p.gca().add_artist(my_circle)
plt.show()

Treemap

Venn Diagram

Donut

Pie Chart

Dendrogram

Circular Packing

Contact & Edit

👋 This document is a work by Yan Holtz. Any feedback is highly encouraged. You can fill an issue on Github, drop me a message onTwitter, or send an email pasting yan.holtz.data with gmail.com.

This page is just a jupyter notebook, you can edit it here. Please help me making this website better 🙏!

Violin

Density

Histogram

Boxplot

Ridgeline

Scatterplot

Heatmap

Correlogram

Bubble

Connected Scatter

2D Density

Barplot

Spider / Radar

Wordcloud

Parallel

Lollipop

Circular Barplot

Treemap

Venn Diagram

Donut

Pie Chart

Dendrogram

Circular Packing

Line chart

Area chart

Stacked Area

Streamgraph

Map

Choropleth

Hexbin

Cartogram

Connection

Bubble

Chord Diagram

Network

Sankey

Arc Diagram

Edge Bundling

Colors

Interactivity

Animation with python

Animation

Cheat sheets

Caveats

3D